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We report three-dimensional parallel Lagrangian particle simulations using the lattice Boltzmann method,
conducted at a low Reynolds number. Using modified Lees-Edwards boundary conditions and directly calcu-
lated viscous dissipation, we show that it is possible to recover excellent agreement with the Einstein viscosity
formula in the low concentration limit and to predict viscosity corrections for larger concentrations.
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I. INTRODUCTION

Aqueous and nonaqueous suspensions are of great impor-
tance in a wide range of industrial processes. Analytical and
semiempirical formulas for the shear viscosity of such a sus-
pension are well established �1,2�. These results rely on the
assumption of homogeneity and are valid in the limit of
small suspended solids volume fraction � and small Rey-
nolds number Re. Unfortunately, the results rely either upon
a range of simplifying assumptions seldom found in practice
�1� or empiricism �2�. For the larger values of � and Re of
typical sludge and slurry systems, the necessary suspension
viscosity formulas quickly assume a complicated depen-
dance upon flow properties as well as upon concentration.

In developing appropriate methods to model to larger �
and Re, it is important to have verified methods. We present
a robust, efficient, and scalable technique based upon the
lattice Boltzmann �LB� method. Our approach allows us vis-
cosity data which accurately represent the bulk to be ob-
tained; it is validated against Einstein’s shear viscosity for-
mula �1� for an infinite fluid at Re→0. It is shown to be
necessary to include a simple correction for the effective
hydrodynamics radius of the particles. The resulting method
applies to larger � and Re of course.

A particular advantage of the LB method is its ability to
model systems with a large number, N, of embedded La-
grangian particles. More particularly, for the simulation of
suspensions, LB’s general merits are �i� locality of its surface
stress information, �ii� parallelizability, and �iii� the ability
easily to accommodate geometrically complex boundary
conditions. Simulation execution times scale with particle
size and with N2 �for our present method�. However, there
are strategies well known from molecular dynamics, which
may easily improve the latter scaling, but which were unnec-
essary here �owing to the low particle volume fractions we
consider�.

By applying shear forces in order to obtain a suspension’s
shear rate response, one implicitly imposes a boundary,
thereby making measurements unrepresentative of a bulk
system. However, it is possible to obtain bulk information by
adapting Lees-Edwards �LE� type boundary conditions, simi-
lar to those originally developed for LB by Wagner �3–5�. LE
boundary conditions enable the bulk of a sheared system to
be simulated �6�, essentially by translating the usual periodic
replicas uniformly in the direction of a �known� imposed

shear. Here we report an adaptation of Wagner’s approach,
applicable to isothermal LB fluids containing embedded La-
grangian particles. A recent study by Hyväluoma et al. �10�
also reports the use of the LB method to model high concen-
trations of sheared suspensions. However, the results of
Hyväluoma et al. are recovered in the presence of boundaries
rather than the bulk. Additionally the current work uses dis-
sipation to measure the viscosity, an approach which be-
comes necessary when using LE boundary conditions.

Using the algorithm of Ladd �7�, a monodisperse popula-
tion of N spherical particles, radii R, was inserted into a
three-dimensional �3D� LB fluid simulation with domain de-
composition parallelization. The LB model used was the iso-
thermal variant widely designated D3Q15 �8�, with a single
relaxation time, �. Our chosen variant of Ladd’s algorithm
employs what are essentially bounce-back boundary condi-
tions �8� to represent the suspended particles’ boundaries �7�.
While later versions of similar algorithms �e.g., Verberg and
Ladd �9�� result in refined boundary representations, the
original method �7� was chosen for this work on account of
its being representative, simple, and robust.

Features of our method are discussed in Sec. III. Also
described in Sec. III is the method by which the viscous
dissipation in the fluid is calculated directly, then used to
extract effective viscosity measurements. In Sec. IV we
present results for effective viscosity �i� in the low concen-
tration limit, which we find, on applying corrections, to be in
excellent agreement with the Einstein calculation and �ii� for
slightly increased concentration, which we find to be in
agreement with the Krieger-Dougherty relation. We present
conclusions in Sec. V.

II. BACKGROUND

The single relaxation time LB method �8� may be defined
by the evolution equation for its primary quantity, the mo-
mentum distribution function f i:

f i�r + ci,t + 1� = f i�r,t� −
1

�
�f i�r,t� − f i

0��,�u�� . �1�

f i represents a population of particles with velocity ci. The
set ci , i=0. .14 defines the lattice. Associated with link i is
weight tp. Corresponding tps and cis for the D3Q15 variant
used here are defined in Table I. The nodal density � and the
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nodal momentum �u are defined by the moments of f i with
ci. In Eq. �1�, the f is are relaxed towards the equilibrium
population fi

0�tp ,� ,u�, which is a polynomial in u. Parameter
� in Eq. �1� determines the kinematic viscosity �= 1

6 �2�−1�
�8�.

No-slip, boundary conditions in LB emerge from a
midlink bounce-back lattice closure rule, in which the f is on
a boundary node at rw are subject to a specular reflection,
taken to occur at the midpoint rw+ 1

2ci of the link ci:

f−i�rw,t + 1� = f i�rw,t�, �c−i � − ci� . �2�

This rule was generalized by Ladd �7� to boundaries with
velocity uw; he replaced the evolution in Eq. �1� with

f−i�rw,t + 1� = f i�rw,t� +
2�tp

cs
2 �ww · c1� , �3�

where the speed of sound cs=1/�3 for our model.
Equation �3� is useful in representing the effect of moving

particles boundaries on the embedding fluid. It can also be
used to compute the forces and torques impressed upon the
particles by the fluid �7�. Emphasizing that later versions of
Ladd’s method �9� result in refined boundary representations,
we note that the sublattice lubrication force for particles in
close approach, inserted into this algorithm by Nguyen and
Ladd �11�, was omitted from our model, which is aimed at
the low concentration limit.

III. SIMULATION METHOD

The D3Q15 model and Ladd’s representation of moving
particle boundaries are outlined in Sec. II. Ladd’s algorithm
�7� treats the particle interior as being occupied by an inte-
rior fluid. For our model, the interior fluid was considered to
be in a state of uniform translation and rotation, determined
by the motion of the particle boundary. Let r be a location
inside a particle centered on the origin, with translational
velocity u0, angular velocity �; the interior fluid was de-
scribed by the equilibrium population f i

0�tp ,� ,u0+��r�.
LE boundary conditions �6�, after Wagner �3,4�, were ap-

plied. For embedded particles migrating across the LE
boundary, any portion of the particle surface which had
passed the boundary was reintroduced �from the periodic
replica� having been displaced and accelerated. For a bound-
ary parallel to the shear direction, êx, the reentrant portion of
a crossing particle was �i� displaced �advected� by the action
of the LE velocity vLEêx �3–5� through distance vLEêx�t,
with �t=1 the simulation time step and �ii� accelerated by an
addition of the LE velocity vLEêx. Wagner’s method was ap-
plied to all �including interior� fluid at the LE boundary,

which, to facilitate parallel implementation, coincided with a
boundary of the domain decomposition. The update of par-
ticle position and velocity on the LE boundary was made
after the LB collision step; information on the LE boundary
being updated in the interprocess communication routine.
This precaution ensured that each process knew of the data in
its own domain and in that neighboring layer required for the
LB propagation step and for calculating velocity derivatives,
Eq. �5�.

Total dissipation was calculated from a discrete approxi-
mation to the usual volume integration for dissipation in
incompressible fluids �12,13�:

Ėkin�t� =
	

2 �
r
�	 �u


�x�

+
�u�

�x


2�

r,t
, �4�

where r excludes nodal positions inside particle boundaries.
The derivatives in �4� were evaluated nonlocally using the
isotropy properties of the D3Q15 lattice:

�u


�x�

=
1

cs
2�

i

tpu
�r + ci�ci� + o�ci
3� . �5�

Although it is more computationally convenient to calculate
dissipation from the product of the stress and velocity �both
being local functions of f i in the LB method �7�� we found
this approach to give noisy results.

For the given LE velocity vLEêx, Ėkin�t� in Eq. �4� was
calculated for �i� a continuous fluid and �ii� a fluid containing
particles. Note, in �i� the result coincided with the theoretical
value for a continuous LB fluid; 	0= �� /6��2�−1�, �8�. For
LB nodes with links across a particle boundary, the nearest-
neighbor velocity, u
�r+ci�, in Eq. �5� was taken to be the
velocity of the interior fluid, the motion of which, we recall,
reflects that of the particle.

Denote the total dissipation for the continuous �particu-

late� system ĖCkin �ĖDkin�. For an unbounded, sheared, dilute

suspension of spheres at Re=0, Einstein showed ĖDkin
=	�̇ /2, where 	 is the effective suspension viscosity �1,12�;
for the corresponding sheared bulk fluid ĖCkin=	0�̇ /2. 	
may therefore be calculated from

	

	0
=

ĖDkin

ĖCkin

. �6�

IV. RESULTS AND DISCUSSION

Ladd’s method �7� for inserting the particle surface is ef-
ficient and robust. However, its use of what is effectively a
bounce-back closure leads to a displacement of the Dirichlet
boundary imposed by the particles on the fluid; the essential
problem is well known in LB. For stationary plane bound-
aries, depending upon the value of � and boundary orienta-
tion, a closure imposed by bounce back locates a zero of
velocity 0.5 lattice spacings into the flow domain �8�. It fol-
lows that particles’ effective radius is not well defined. By
increasing the particle number and decreasing the particle
radius, this effect must increase in importance. We show in

TABLE I. Velocities and corresponding weights for the D3Q15
lattice.

i 0 1–6 7–14

�ci� 0 1 �3

ti
2
9

1
9 1/72
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this section that one can overcome “hydrodynamic misfit” in
the dilute systems under study, by straightforward recalibra-
tion, down to a surprisingly small particle radii R3.

First consider unadjusted results. Data for a range of par-
ticle sizes were obtained on a lattice of 128�128�128. The
fluid was initialized to a uniform density �=1.8; the value of
the relaxation parameter �=1.0 used corresponds to an opti-
mum of performance in locating the boundary using bounce-
back boundary conditions �8�. A number N=1. .216 of par-
ticles of radii R=3, 6, 8, 12, and 16 were considered. Note
that the low concentration limit of a suspension is widely
assumed to correspond to a system with an average interpar-
ticle spacing 6R. LE boundary conditions were imposed
by a LE velocity vLE=0.05 �3,4�. In all cases Re
�vLER2 / �Lx��, L being the size of the simulation box in the
direction of the velocity gradient, did not exceed the value
0.6; a value small enough to signify a linear rheological
response.

The instantaneous suspension viscosity 	 and the corre-
sponding viscosity 	0 of the pure fluid, were determined
from the direct measurement of dissipation, as discussed in
Sec. III. Figure 1 displays the time dependence of the dimen-

sionless viscosity ratio 	 /	0 for R=8 lattice units, N=8,
N=27, and N=64.

Steady-state, short-time averaged values of ratio 	 /	0 are
plotted against solid particles’ volume fraction:

� = 4
3�R3N , �7�

in Fig. 2; the solid line is the Einstein formula �1�:

	

	0
= �1 + 5

2�� . �8�

In Fig. 2 no correction to the particles’ radius has been ap-
plied; it shows increasing departure from the expected trend
�Eq. �8�� with increasing �, for ��0.01 �while still retaining
the low concentration approximation�. This we attribute to
the increasing total surface area of the particles. In fact, the
location of a particle boundary is indeterminate; with the
method used, the positions at which the LB fluid velocity
equates to that of a given particle �radius R� do not lie in a
spherical surface, radius R, about the particle center of mass.
A simple solution is to assume an effective particle radius,
although this approach neglects shape fluctuations. A correc-
tion R→R+�R was found to be sufficient for the data of our
study. Radial correction �R was determined by least squares
fitting of relative viscosity data like that in Fig. 2, with the
Einstein formula, for ��0.01. The optimum correction is
�R=−0.78 lattice units, which value accords with typical
bounce-back boundary displacements �8�.

Figure 3 shows relative viscosity after applying this cor-
rection; the solid line corresponds to Einstein formula. The
small value of R=3 produces data which testifies to the ro-
bustness of Ladd’s algorithm.

Figure 4 shows data for higher concentrations. The solid
line is the Einstein formula, the dashed line the Krieger-
Dougherty �2� formula:

	

	0
= 	1 −

�

�c

−2.5�c

, �c = 0.65. �9�

FIG. 1. Time variation of the ratio 	 /	0 for N=8 �lower
branch�, 27 and 64 �upper branch�, and particles of radius R=8.

FIG. 2. Viscosity ratio 	 /	0 at a small particle volume fraction
�. No correction has been applied to the particles’ radius R. The
solid line corresponds to the Einstein formula.

FIG. 3. Relative viscosity versus particle volume fraction, �,
with � adjusted for particles’ radius correction, �R=−0.78. Empty
circles correspond to our smallest value of R=3.
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V. CONCLUSION

We have presented quantitative results from efficient, 3D
LB simulations of monodisperse bulk suspensions of spheri-
cal particles. Relative suspension viscosity has been calcu-
lated in the low concentration limit using a direct method of
calculating dissipation in simulations bounded by modified
LE periodic boundary conditions.

The particular Lagrangian particle algorithm used with
our LB simulations is Ladd’s simplest, oldest, fastest, and
surprisingly robust variant �7�. It suffers from an inaccurate
location of the particle boundary but we have demonstrated
that this can be corrected by adjusting the Lagrangian par-
ticles’ radius R, for R3 �a surprisingly small value�. It is
unlikely that our particular calibration will remain valid for a
different choice of the LB collision parameter � since the
value of � is known to affect the location of the no-slip
boundary created by a bounce-back rule, like that used here
�7�. The corrected results show excellent agreement with the
Einstein calculation in the low concentration limit and with
the Krieger-Dougherty relation at an increased concentration.

Ladd �14� originally developed, and Adhikari et al. �15�
have recently improved, an LB with stress fluctuations which
invest the method with a Green-Kubo formula for viscosity
�14�; this may be applied to particulate suspensions under
periodic boundary conditions �16�, to calculate an effective
suspension viscosity, comparable to which we present here,
but by what is a correlation measurement.
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